博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
PHP,Mysql-根据一个给定经纬度的点,进行附近地点查询–合理利用算法,效率提高2125倍...
阅读量:6175 次
发布时间:2019-06-21

本文共 2447 字,大约阅读时间需要 8 分钟。

  hot3.png

目前的工作是需要对用户的一些数据进行分析,每个用户都有若干条记录,每条记录中有用户的一个位置,是用经度和纬度表示的。

还有一个给定的数据库,存储的是一些已知地点以及他们的经纬度,内有43W多条的数据。

现在需要拿用户的经纬度和已知地点进行距离匹配,如果它们之间的距离小于一定的数据,比如说500米,就认为用户是在这个地点。

MYSQL本身是支持空间索引的,但是在5.x的版本中,取消了对Distance()和Related()的支持,参考这里:,无法使用空间的距离函数去直接去查询距离在一定范围内的点。所以,我首先想到的是,对每条记录,去进行遍历,跟数据库中的每一个点进行距离计算,当距离小于500米时,认为匹配。这样做确实能够得到结果,但是效率极其低下,因为每条记录都要去循环匹配40W条数据,其消耗的时间可想而知。经过记录,发现每条记录处理的时间消耗达到1700ms,针对每天上亿的数据量,这样一个处理速度,让人情何以堪啊。。。

我自己也有个想法,就是找到每条记录所在点的经纬度周围的一个大概范围,比方说正方形的四个点,然后使用mysql的空间计算,使用MBR去得出点在这个矩形内的已知记录,然后进行匹配。可惜,自己没想出能计算到四个点经纬度的方法。

意外的,查询到了一个关于这个计算,里面使用python实现了这个想法。

所以参考了一下原文中的算法,使用PHP进行了实现。

实现原理也是很相似的,先算出该点周围的矩形的四个点,然后使用经纬度去直接匹配数据库中的记录。

红色部分为要求的搜索范围,绿色部分我们能间接得到的结果范围

 

参考wiki百科上的一些球面计算公式:

  • H

假设已知点的经纬度分别为$lng, $lat

先实现经度范围的查询,

在haversin公式中令φ1 = φ2,可得:

用PHP进行计算,就是:

//$lat 已知点的纬度$dlng =  2 * asin(sin($distance / (2 * EARTH_RADIUS)) / cos(deg2rad($lat)));$dlng = rad2deg($dlng);//转换弧度

然后是纬度范围的查询,

在haversin公式中令 Δλ = 0,可得

在PHP中进行计算,就是:

$dlat = $distance/EARTH_RADIUS;//EARTH_RADIUS地球半径$dlat = rad2deg($dlat);//转换弧度

最后,就可以得出四个点的坐标:

left-top : (lat + dlat, lng – dlng)

right-top : (lat + dlat, lng + dlng)

left-bottom : (lat – dlat, lng – dlng)

right-bottom: (lat – dlat, lng + dlng)

我把以上方法写成了一个函数,综合起来就是:

define(EARTH_RADIUS, 6371);//地球半径,平均半径为6371km /** *计算某个经纬度的周围某段距离的正方形的四个点 * *@param lng float 经度 *@param lat float 纬度 *@param distance float 该点所在圆的半径,该圆与此正方形内切,默认值为0.5千米 *@return array 正方形的四个点的经纬度坐标 */ function returnSquarePoint($lng, $lat,$distance = 0.5){    $dlng =  2 * asin(sin($distance / (2 * EARTH_RADIUS)) / cos(deg2rad($lat)));    $dlng = rad2deg($dlng);        $dlat = $distance/EARTH_RADIUS;    $dlat = rad2deg($dlat);        return array(                'left-top'=>array('lat'=>$lat + $dlat,'lng'=>$lng-$dlng),                'right-top'=>array('lat'=>$lat + $dlat, 'lng'=>$lng + $dlng),                'left-bottom'=>array('lat'=>$lat - $dlat, 'lng'=>$lng - $dlng),                'right-bottom'=>array('lat'=>$lat - $dlat, 'lng'=>$lng + $dlng)                ); }//使用此函数计算得到结果后,带入sql查询。$squares = returnSquarePoint($lng, $lat);$info_sql = "select id,locateinfo,lat,lng from `lbs_info` where lat<>0 and lat>{$squares['right-bottom']['lat']} and lat<{$squares['left-top']['lat']} and lng>{$squares['left-top']['lng']} and lng<{$squares['right-bottom']['lng']} ";

在lat和lng上建立一个联合索引后,使用此项查询,每条记录的查询消耗平均为0.8毫秒,相比以前的1700ms,真的是天壤之别啊。效率真真的是以前的2125倍~~

总结:这应该也不是效率最好的办法,但是效率比以前确实有明显的提升。请记住,总有办法更好的。

转载于:https://my.oschina.net/enq/blog/1924154

你可能感兴趣的文章
python3.5里的正则表达式
查看>>
Exchange server 2013 SP1 客户端会议室邮箱自动回复延迟
查看>>
nginx反向代理缓存服务器构建
查看>>
RHEL6 搭建LVS/DR 负载均衡集群 案例
查看>>
以太坊·Rinkeby 测试网络
查看>>
字符串按规则排序算法
查看>>
MPLS + BGP高级特性
查看>>
plist文件读写操作
查看>>
oracle resetlogs和noresetlogs 创建控制文件区别
查看>>
2013-7-17学习作业练习
查看>>
ZAM 3D入门教程(4):Extrusion编辑器
查看>>
《深入实践Spring Boot》一第2章 在Spring Boot中使用数据库2.1 使用MySQL
查看>>
C++语言基础 例程 字符串类
查看>>
堆排序
查看>>
Java的热部署(后期完善)
查看>>
css总结
查看>>
Python学习笔记之六:在VS中调用Python
查看>>
node.js获取参数的常用方法
查看>>
jquery 的 change() 方法的使用
查看>>
本地计算机上的XXX服务启动后又停止了
查看>>